Step of Proof: trans_rel_func_wrt_sym_self
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
trans
rel
func
wrt
sym
self
:
1.
T
: Type
2.
R
:
T
T
3. Trans(
T
;
x
,
y
.
R
(
x
,
y
))
4.
a
:
T
5.
a'
:
T
6.
b
:
T
7.
b'
:
T
8.
R
(
a
,
b
)
9.
R
(
b
,
a
)
10.
R
(
a'
,
b'
)
11.
R
(
b'
,
a'
)
12.
R
(
a
,
a'
)
R
(
b
,
b'
)
latex
by ((FLemma `trans_rel_self_functionality` [3])
CollapseTHENA ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
13.
a
,
a'
,
b
,
b'
:
T
.
R
(
b
,
a
)
R
(
a'
,
b'
)
R
(
a
,
a'
)
R
(
b
,
b'
)
C1:
R
(
b
,
b'
)
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
x
(
s1
,
s2
)
,
{
T
}
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
trans
rel
self
functionality
origin